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Abstract. The transport of solutes in river networks is controlled by the interplay of processes such as in-stream 

solute transport and the exchange of water between the stream channel and dead zones, in-stream sediments, and 

the hyporheic zone. Transient storage models (TSMs) are a powerful tool for testing hypotheses related to solute 

transport in streams. However, TSM parameters are often non-identifiable leading to an unclear understanding of 15 

the processes controlling solute transport in streams. In this study, we increased parameter identifiability in a set 

of tracer breakthrough experiments by combining global identifiability analysis and dynamic identifiability 

analysis. We compared our results to inverse modelling approaches (OTIS-P) and the commonly used random 

sampling approach for TSMs (OTIS-MCAT). Compared to OTIS-P, our results informed about sensitivity and 

identifiability of TSM parameters on the entire feasible parameter space. Our results clearly improved parameter 20 

identifiability compared to OTIS-MCAT that often indicated non-identifiability of TSM parameters. Non-

identifiable results led to wrong solute retention times in the storage zone and the exchange flow with the storage 

zone, with a difference respectively up to four and two orders of magnitude compared to results with identifiable 

TSM parameters. The severe differences in the transport metrics between results obtained from our proposed 

approach and results from OTIS-MCAT model also resulted in contrasting interpretation of the hydrologic 25 

processes controlling solute transport at the study site. Thus, our outcomes point to the risks of interpreting TSM 

results when even one of the TSM parameters is non-identifiable. Our results showed that there is clear potential 

for increasing parameter identifiability in random sampling approaches for TSMs and for advancing our 

understanding of hydrological processes controlling in-stream solute transport. 
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1 Introduction 

 40 

Modelling of stream water movement is pivotal for understanding how nutrients, solutes and pollutants are 

transported downstream and ultimately affect stream water quality along river networks (Krause et al., 2011; 

Rathfelder, 2016; Smith, 2005). Experimental studies of water flow and solute transport in the stream channel 

commonly rely on the observation of tracer breakthrough curves (BTC, i.e., the measurement of the concentration 

over time of a tracer released in an upstream section). Such a BTC reflects stream discharge (Beven et al., 1979; 45 

Butterworth et al., 2000) and longitudinal tracer advection and dispersion (Gooseff et al., 2008). A milestone in 

the study of solute transport was that in-stream solutes and water are exchanged with slowly-moving channel 

waters, the dead zones (Hays, 1966), and with the saturated area between the stream channel and the adjacent 

groundwater (i.e., the hyporheic zone, Triska et al., 1989; White, 1993). This hydrologic exchange results in a 

skewed non-Fickian BTC with a pronounced tail, which makes the advection-dispersion equation (ADE) unable 50 

to correctly describe the observed tracer transport in stream channels (Bencala & Walters, 1983; Castro & 

Hornberger, 1991). Despite the large amount of studies, the numerous contradictory outcomes (Ward & Packman, 

2019), coupled with uncertainties of the model parameters (Ward et al., 2017), raise the question about how 

informative such modelling results are (Knapp & Kelleher, 2020). 

Considerable potential in reducing uncertainty of the processes controlling solute transport in streams lies in 55 

modelling the tail of the BTC, since it contains information on the transient storage inside the stream channels 

(Bencala et al., 2011). For simulating the retentive effect of dead zones on solute transport, Hays (1966) modelled 

the tail of the BTC by introducing a second differential equation in addition to the ADE. Following a similar 

approach, (Bencala & Walters (1983) described the solute transport in streams as a pure advection-dispersion 

transport, coupled with a hydrologic exchange term between the stream channel and a single, homogeneously 60 

mixed volume that delays the solute movement downstream (Transient Storage Model - TSM). The estimation of 

TSM parameters often rely on the use of inverse modelling approaches via nonlinear regression algorithm that 

can return precise estimation of TSM parameters with a narrow 95% confidence interval (OTIS-P; Runkel, 1998). 

While this approach found extensive application in past decades, it does not allow a comprehensive assessment 

about the identifiability of the TSM parameters (Ward et al., 2017; Knapp & Kelleher, 2020). This is because 65 

inverse modelling approach do not provide information on performances and parameter identifiability on the entire 

feasible parameter space (Ward et al., 2017). Also, the parameter sets obtained after inverse modelling approach 

do not necessarily indicate meaningful results, as non-identifiable parameters can provide good BTC fitting 

despite being uncertain and non-identifiable (Kelleher et al., 2019). These considerations, coupled with the lack 

of knowledge of the modeller over the distribution of parameters and their performance after OTIS-P results, led 70 

to a progressive increase of studies addressing identifiability in TSMs via random sampling of parameters and 

global identifiability analysis (OTIS-MCAT model; Ward et al., 2017; Knapp & Kelleher, 2020; Kelleher et al., 

2019).  

Random sampling approaches provide information on parameter identifiability and accuracy on the feasible 

parameter space, however they rarely show identifiability for all the TSM parameters (Knapp & Kelleher, 2020). 75 

Kelleher et al. (2013) found that the parameters associated with the transient storage process are not identifiable 

for a large variety of the stream reaches and experiments they investigated. Other studies have shown that TSM 

parameters are often not-independent and poorly identifiable (Camacho & González, 2008; Kelleher et al., 2019; 
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Knapp & Kelleher, 2020; Wagener et al., 2002; Ward et al., 2017; Wlostowski et al., 2013). Despite these findings 

and the crucial need for parameter identifiability, only few studies have explored the reliability of TSM results 80 

obtained via inverse modelling approach, and model interpretation is often based on a single set of parameters 

without testing their robustness (Knapp & Kelleher, 2020).  

Addressing the identifiability of TSM parameters is a pressing issue, since we are still unable to link specific 

physical processes with the parameters derived from BTC studies (Ward & Packman, 2019). This problem is 

commonly related to the over-simplistic approach of TSM, which is unable to distinguish between the effects of 85 

eddies, pools, and the hyporheic zone (Gooseff et al., 2008; Zaramella et al., 2006). To overcome this limitation, 

the TSM has been modified to include multiple storage zones (Choi et al., 2000), sorption kinetics for reactive 

tracers (Gooseff et al., 2005; Kelleher et al., 2019), and changes of residence time distributions in the storage zone 

(Haggerty et al., 2002). While these changes increased the quality of the model fit, they also came at the cost of 

increased dimensionality with a further reduction of parameter identifiability and certainty, leaving the open 90 

question what physical processes exactly are associated with the transient storage modelling (Kelleher et al., 2019; 

Knapp & Kelleher, 2020). 

The observed strong non-identifiability for TSM parameters in random-sampling studies may have three causes. 

First, there is no common strategy for selecting parameter ranges and the number of parameter sets in TSM 

simulations. To obtain reliable results, Ward et al. (2017) indicated that modelling studies need to apply TSM on 95 

a large number of parameter sets (between 10,000 and 100,000) over a parameter range spanning at least two 

orders of magnitude. While for some studies, the non-identifiability of parameters might be explained by the low 

number of parameter sets (less than 10,000) and the relatively narrow selected parameter range (Camacho & 

González, 2008; Wagener et al., 2002; Wlostowski et al., 2013), non-identifiability was also found when a rather 

large number of parameter sets and wide range were used (Kelleher et al., 2013; Kelleher et al., 2019; Ward et al., 100 

2017). This is bringing up the question if and when TSM parameters are actually meaningful (Knapp & Kelleher, 

2020).  

A second cause related to uncertain results in the random-sampling approach for TSM parameters relates to the 

selected parameters chosen for TSM simulations. The parameters describing the advection-dispersion process 

(stream velocity, cross-sectional area of the stream channel, and the longitudinal dispersion) are known to be the 105 

best identifiable in the TSM (Ward et al., 2017) and once they are kept constant in the random sampling of the 

parameters, they can drive strong changes in the parameters describing the transient storage process (Knapp & 

Kelleher, 2020). This dependency indicates that the use of a constant value for an identifiable parameter may 

result in a mis-estimation of the other TSM parameters. While it is not recommended to keep constant a rather 

identifiable parameter in random-sampling approaches for TSMs, no study investigated the role that a variable 110 

velocity has on identifiability of TSM parameters. This leads to the question on how meaningful, sensitive, and 

uncertain the transient storage parameters are when stream velocity varies or is kept constant.  

A third cause for non-identifiable TSM parameters relates to the selected approach for addressing parameter 

identifiability. The identifiability analysis used in most studies is based on the Generalized Likelihood Uncertainty 

Estimation that assesses parameter certainty across the entire observed BTC (GLUE, Beven & Binley, 1992; 115 

Camacho & González, 2008; Kelleher et al., 2013; Kelleher et al., 2019; Ward et al., 2017). However, such global 

identifiability analysis is unable to find informative sections of the simulated BTC with respect to a certain 

parameter and to unequivocally link a given parameter to a specific process (Wagener et al., 2003; Wagener et 
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al., 2002; Wagener & Kollat, 2007). This information is particularly important for BTC modelling, since 

advection-dispersion parameters are physically responsible for the bulk solute transport in the stream and they are 120 

therefore expected to act on the rising limb and peak of the BTC (Gooseff et al., 2008). Contrary, the parameters 

describing the exchange between the stream channel and the transient storage zone are responsible for delaying 

solute transport compared to the advective-dispersive transport, acting on the falling limb and tail of the BTC 

(Runkel, 2002). By investigating parameter sensitivity and identifiability across the entire BTC, global 

identifiability analysis is unable to capture an increase in parameter identifiability towards the tail of the BTC. 125 

However, studies addressing the identifiability of TSM parameters over time in different sections of the BTC 

reported an increase of identifiability for transient storage parameters on the tail of the BTC (Wagener et al., 2002; 

Scott et al., 2003; Wlostowski et al., 2013; Kelleher et al., 2013). We hypothesise that this information is key in 

designing a successive parameter sampling in a constrained parameter space – ultimately reducing the uncertainty 

affecting parameters describing solute retention in streams.  130 

A robust assessment of transient storage parameters would not only improve the model fit of tracer transport and 

decrease parameter uncertainty, but it might also lead to stronger interpretation on the physical processes 

controlling solute transport in streams. TSM parameters are often used to calculate metrics on the solute exchange 

between the stream channel and the transient storage zone and the residence time of solutes in the coupled system 

(Thackston and Schnelle, 1970; Hart et al., 1999; Morrice et al., 1997; Runkel, 2002). These metrics are pivotal 135 

to address the potential for nutrient cycling, microbial activity, and the development of hot-spots in river 

ecosystems (Mulholland et al., 1997; Smith, 2005; Triska et al., 1989; Krause et al., 2017). However, no study so 

far indicated and evaluated if and how much the interpretation of hydrologic processes changes when TSM 

parameters are identifiable and when they are not, due to the enunciated challenges in TSMs. 

To address these challenges, we have organised this contribution around three questions related to the key 140 

challenges of parameter identifiability in transient storage modelling: 

1) How does the identifiability and the information content of model parameters associated with transient 

storage processes change by using fixed and varying velocity in the random-sampling of TSM 

parameters? 

2) Does the identifiability analysis on specific sections of the BTC reduce the parameter uncertainty in 145 

random-sampling of TSM?  

With the outcomes of these questions we will address: 

3) How does the residence time of solute in the transient storage zone and hydrologic process interpretation 

vary when TSM parameters are identifiable and when they are not?  

 150 

2 Study site and methods 

2.1 Study site and data 

The studied stream reach (49o49'38''N, 5o47'44''E) is located in western Luxembourg, downstream of the 

Weierbach experimental catchment (Hissler et al., 2021). The stream channel is unvegetated with a slope of ≃6 

% and consists of deposited colluvium material and fragmented schists (up to 50 cm depth) with local outcrops of 155 

fractured slate bedrock in the streambed.  The flow regime is governed by the interplay of seasonality between 

precipitation and evapotranspiration (Rodriguez et al., 2021; Rodriguez & Klaus, 2019) with a persistent discharge 
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between autumn and spring, and little to no discharge during summer months (discharge arithmetic mean equal 

to 6.5 l/s, median of 1.7 l/s, St.Dev. of 11.52 l/s between Aug 2018 and Feb 2020; Bonanno et al., 2021). To test 

our objectives, we have carried out three tracer experiments with an instantaneous tracer injection at three different 160 

flow (Q) conditions: 6th December 2018, Q = 2.52 l/s (E1); 23rd January 2019, Q = 9.05 l/s (E2); 28th January 

2019, Q = 22.79 l/s (E3). For each experiment, we prepared an NaCl solution using 2 l of stream water and 100 g 

of reagent-grade NaCl. We injected the solution in a turbulent pool at the beginning of the stream reach to assure 

complete mixing in the stream water. Electric conductivity (EC) was measured via a portable conductivity meter 

(WTW) 55 m downstream of the injection point and converted into Cl- concentration via an EC-Cl- regression 165 

line (R2 = 0.9999).  

2.2 Advection-Dispersion equation and Transient Storage Model formulation 

The one-dimensional Fickian-type advection and dispersion equation describes the joint effect of flow velocity 

and turbulent diffusion on solute transport (Beltaos & Day, 1978; Taylor, 1921, 1954). The differential form of 

ADE reads: 170 

𝜕𝐶

𝜕𝑡
= −𝑣

𝜕𝐶

𝜕𝑥
+

1

𝐴

𝜕

𝜕𝑥
(𝐴𝐷

𝜕𝐶

𝜕𝑥
)        Eq.1 

Where t is time [T], x is the distance from the injection point along the stream reach [L], A [L2] is the cross-

sectional area of flow, v [L/T] is the average flow velocity, D [L2/T] is the longitudinal dispersion coefficient, and 

C is the concentration of the observed tracer above background levels [M/L3]. The solution of the differential form 

of ADE for an instantaneous solute injection at x = 0 [L] reads: 175 

𝐶(𝑡) =
𝑀

𝐴(4𝜋𝐷𝑡)1/2
𝑒𝑥𝑝 [−

(𝐿−𝑣𝑡)2

4𝐷𝑡
]        Eq. 2 

Where M is the injected solute mass [M], t is time [T], and L is length of the investigated reach [L]. 

The TSM describes the solute transport in streams by combining the advection-dispersion process in the stream 

channel through a hydrologic exchange with an external storage zone. The model equations read (Bencala & 

Walters, 1983): 180 

{

𝜕𝐶

𝜕𝑡
= −𝑣

𝜕𝐶

𝜕𝑥
+

1

𝐴

𝜕

𝜕𝑥
(𝐴𝐷

𝜕𝐶

𝜕𝑥
) +

𝑞𝐿

𝐴
(𝐶𝐿 − 𝐶) + 𝛼(𝐶𝑇𝑆 − 𝐶)

𝜕𝐶𝑇𝑆

𝜕𝑡
= −𝛼

𝐴

𝐴𝑇𝑆
(𝐶𝑆 − 𝐶)

     Eq.3 

where the hydrologic exchange with the transient-storage zone is driven by the exchange coefficient α [1/T] and 

the area of the transient storage zone, ATS [L2]. Here, we will refer to A, v, and D as “advection-dispersion 

parameters” and to ATS and α as “transient storage parameters”; the five parameters are referred to as “TSM 

parameters”. The solute concentration in the main channel and the transient storage zone are C and CS [M/L3], 185 

respectively. The performances of both ADE and TSM results are evaluated using the Root Mean Squared Error 

objective function (RMSE), which is the most commonly used objective function in solute-transport studies (Ward 

et al., 2018; Wlostowski et al., 2017; Zaramella et al., 2016). 

2.3 Iterative modelling approach to obtain TSM parameters 

Several sampling approaches were previously used to estimate parameter uncertainty in TSMs, such as Monte 190 

Carlo sampling (Wagener et al., 2002; Wagner & Harvey, 1997; Ward et al., 2013), Latin hypercube sampling 
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(LHS, Kelleher et al., 2019), and Monte Carlo coupled with a behavioural threshold (Kelleher et al., 2013; Ward 

et al., 2017). Here, we use LHS to sample from the selected parameter space, due to LHS higher efficiency 

compared to the classic Monte Carlo approach (Yin et al., 2011).  

We simulated our tracer experiments with the ADE by sampling advection-dispersion parameters via LHS to 195 

avoid initial assumptions that could impact the parameter estimates (Figure 1). The RMSE value of the best-

performing ADE parameter set was indicated as RMSEADE. Similar to the Monte Carlo approach coupled with 

behavioural threshold (Kelleher et al., 2013; Ward et al., 2017), we simulated the three tracer experiments with 

the TSM through a step-wise approach with n TSM iterations (n is number of iterations, Figure 1). To obtain 

reliable TSM results, Ward et al. (2017) suggested a minimum amount of parameter sets between 10,000 and 200 

100,000. Thus, in each TSM iteration we simulated 115,000 parameter sets. Results of each TSM iteration include 

RMSE values for the 115,000 parameter sets, and results of global identifiability analysis of TSM parameters. 

Global identifiability analysis was conducted through parameter vs RMSE plots (Wagener et al., 2003), parameter 

distribution plots (Ward et al., 2017), regional sensitivity analysis (Kelleher et al., 2019; Wagener & Kollat, 2007), 

and parameter distribution plots (Wagener et al., 2002; Ward et al., 2017). Globally identifiable parameters satisfy 205 

the following criteria: univocal peak of performance in parameter vs RMSE plots and in parameter distribution 

plots (Ward et al., 2017) and CDF corresponding to the best 0.1 % of the results deviating from the 1:1 line and 

from parameter CDF corresponding to the best 10 % of the results (Kelleher et al., 2019). To evaluate the degree 

of identifiability of a certain parameter, we also evaluated the two-sample Kolmogorov-Smirnov (K-S) test which 

calculates the maximum distance K and the corresponding p-value between two cumulative distribution functions, 210 

F(P0.1) and F(P10), by: 

[𝐾, 𝑝] = 𝑚𝑎𝑥|𝐹(𝑃0.1) − 𝐹(𝑃10)|        Eq. 4 

Where F(P0.1) and F(P10) are the cumulative distribution function of a parameter P respectively for the best 0.1% 

and the best 10% of the results. Following the approach of Ouyang et al. (2014), we grouped parameter 

identifiability in four categories: highly identifiable (K > 0.25, p ≤ 0.05), moderately identifiable (0.1 ≤ K ≤0.25, 215 

p ≤0.05), poorly identifiable (K < 0.1, p ≤ 0.05), and non-identifiable (p > 0.05).  

100 best performing parameter sets for each iteration were analysed with the DYNamic Identifiability Analysis 

(DYNIA, Wagener et al., 2002) to address the role of TSM parameters on the BTC and the change of information 

content. The dynamic identifiability analysis identifies regions of the observed data that are sensitive (or not) to 

the investigated model parameter, and it can be used to test model structure, to design specific experiments, and 220 

to relate the model parameters to a specific simulated model response (Wagener et al., 2004). The dynamic 

identifiability analysis yields the distribution of the likelihood as function of the parameter values and the 

information content of the parameters over time. The information content is expressed as one minus the width of 

the 90 % confidence interval over the entire parameter range (Wagener et al., 2002). A wide 90 % confidence 

interval indicates that various parameter values are associated to equally good performances resulting in a low 225 

information content. Conversely, narrow 90% confidence intervals and corresponding high information content 

values suggests that the best performing parameters are contained in a relatively narrow range compared to the 

feasible range. A detailed description on how to read the plots used to address the global identifiability analysis 

and the description of the dynamic identifiability analysis algorithm are reported in Appendix A. 

The first TSM iteration investigated model performance over parameter ranges defined from the ADE results and 230 

literature values (Table 1). The following TSM iterations sampled via LHS over parameter ranges defined by the 
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results of the previous TSM iteration. Namely, if the global identifiability analysis from the previous TSM 

iteration indicated that the investigated parameter is identifiable, the best 1 % of the results were used to define 

its parameter space in the successive TSM iteration. When the identifiability criteria were not met, the parameter 

space investigated in the successive TSM iteration was increased or, for the case of ATS and α, it was constrained 235 

based on the dynamic identifiability analysis result (information content above 0.66 on the BTC tail). This 

condition was chosen by the evidence that transient storage parameters ATS and α are often non-identifiable via 

global identifiability analysis (Camacho & González, 2008; Ward et al., 2013; Ward et al., 2017; Kelleher et al., 

2019), but they are identifiable on the BTC tail (Kelleher et al., 2013; Wagener et al., 2002; Wlostowski et al., 

2013). 240 

While the first TSM iteration was conducted to investigate the identifiability of all the possible combinations in 

the feasible parameter space reported in literature and from results of ADE (Table 1), the successive iterations 

excluded pairs of v and A whose product was outside the value of the discharge evaluated via dilution gauging 

±10 %. This condition was chosen to respect results from Schmadel et al. (2010), who reported that the discharge 

error from dilution gauging method is ≃8 %. The approach reported in Figure 1 for TSM was used also in the 245 

case where v was assumed fixed and equal to vpeak. The modelling was finalized once every TSM parameter 

indicated global identifiability via the enunciated criteria and the Kolmogorov-Smirnov test resulted in K > 0.1 

and p ≤ 0.05 for each TSM parameter. 

We compared our results with both inverse modelling results (OTIS-P), and the most-common random sampling 

approach in TSMs (OTIS-MCAT). OTIS-P is an inverse-modelling scheme that minimise residual sum of squares 250 

between the modelled BTC and the observed BTC. OTIS-P model estimates the best-fitting TSM parameter values 

and their 95 % confidence interval. As indicated in Runkel (1998), we carried out multiple OTIS-P iterations and 

interrupted them when parameter values calibrated via OTIS-P changed less than 0.1 % between subsequent runs. 

OTIS-MCAT solves the TSM for the selected number of parameter sets and addresses their identifiability with a 

global identifiability analysis (Ward et al., 2017). Compared to our approach, OTIS-MCAT considers Monte Carlo 255 

parameter sampling instead of LHS, velocity equal to vpeak and it does not foresee iterative parameter sampling 

from results of dynamic identifiability analysis. Thus, we here indicate as “OTIS-MCAT results” the results we 

obtained after the first TSM iteration when v was assumed fixed and equal to vpeak. 

2.4 Hydrologic interpretation of TSM results  

The TSM parameter sets obtained after OTIS-P, OTIS-MCAT, and the proposed iterative TSM approach were 260 

used to compute some hydrologic metrics to interpret solute transport in streams. We here computed the average 

distance a molecule travels in the stream channel before entering the transient storage zone (Ls [L], Mulholland et 

al., 1997): 

𝐿𝑠 =
𝑣

𝛼
           Eq.5 

The average time spent by a molecule in the transient storage zone (Tsto [T]) is evaluated as (Thackston and 265 

Schnelle, 1970): 

𝑇𝑠𝑡𝑜 =
𝐴𝑇𝑆

𝛼𝐴
          Eq.6 
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We computed the average water flux through the storage zone per unit length of stream channel to interpret the 

magnitude of flux between the stream channel and the transient storage zone (qs [L2/T], Harvey et al., 1996): 

𝑞𝑠 = 𝛼𝐴          Eq.7 270 

However, Ls, Tsto, and qs metrics are not able to encompass both the role of advective transport and of the transient 

storage. Thus, we also evaluated FMED [-] that accounts for the median travel time due to advection-dispersion and 

transient storage and for the travel time only due to advection-dispersion (Runkel, 2002): 

𝐹𝑀𝐸𝐷 ≅ (1 − 𝑒
(−𝐿

𝛼

𝑣
)
)

𝐴𝑇𝑆

𝐴𝑇𝑆+𝐴
         Eq.8  

Increasing values of FMED have to be interpreted as increasing relative importance of the storage zone in the solute 275 

transport downstream (Gooseff et al., 2013; Runkel, 2002). 

3. Results 

3.1 Identifiability of TSM parameters and comparison with OTIS-P and OTIS-MCAT results 

The identifiability of TSM parameters was studied for the three tracer experiments injections (indicated as E1, 

E2, E3, cfr. paragraph 2.1) for two distinct cases: stream velocity considered as a variable parameter, and velocity 280 

considered equal to vpeak (v = vpeak). Global Identifiability analysis results are here reported via only parameter 

values plotted against the corresponding RMSE values. 

3.1.1 Transient storage modelling with stream velocity as varying model parameter  

After the first TSM iteration the global identifiability analysis indicated that v, D, and α parameters are sensitive 

with a unique and identifiable performance peak (K of K-S test always > 0.22 and p < 0.05 for each tracer 285 

experiment). However, A and ATS appeared non- or poorly-identifiable for the three investigated BTCs (Figure 2, 

green dots, p-value of the K-S test for ATS > 0.05 for each tracer experiment). The dynamic identifiability analysis 

provided clearer insights into the effect of the TSM parameters on the BTC and their identifiability ranges 

compared to the global identifiability analysis. v and α were confirmed to be the most identifiable and informative 

parameters in the rising limb, the peak and the tail of the BTC (information content > 0.66; Figure 3b, h). A and 290 

D were mostly identifiable and informative during the rising limb and the tail of the BTC (information content > 

0.50; Figure 3c-f). ATS was uncertain and non-informative in most sections of the BTC (information content < 

0.33; Figure 3i, j). However, the identifiability of ATS increased in the tail of the BTC, where the information 

content was above 0.66 for ATS below 5.356 m2 for E1 (Figure 3i, j), and for ATS below 5.4315 m2 and 4.6404 m2 

respectively for the BTCs of E2 and E3 (results not shown). 295 

The global identifiability of TSM parameters increased through the iterative model approach and when ATS or α 

were poorly or non-identifiable (p-value of the K-S test for ATS > 0.05) TSM performances approached at best 

RMSEADE (Figure 2, green, yellow and blue dots). After four (for E1 and E2) or five (for E3) TSM iterations, the 

parameter values plotted against the corresponding RMSE values showed univocal increase of performance 

toward unique values for v, A, D, α, and ATS (Figure 2, orange dots), and the RMSE of the best performing 300 

parameter sets decreased below RMSEADE (Figure 2, black horizontal line). Also, the CDF corresponding to the 

best 0.1 % of the results deviated both from the 1:1 line and from parameter CDF corresponding to the best 10 % 

of the results (results not shown). These conditions, coupled with the K of K-S test always larger than 0.1 (average 
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K for all the TSM parameters equal to 0.36, and p-value < 0.05) indicated parameter identifiability and the 

finalization of the iterative TSM approach. 305 

The dynamic identifiability analysis for the last TSM iteration showed that the advection-dispersion parameters 

were important in controlling the rising limb and the tail of the BTC (results reported only for E1, Figure 4a-f), 

while α was particularly important for controlling the tail (Figure 4g, h) and ATS for controlling the rising limb and 

the tail of the BTC (Figure4i, j). 

3.1.2 Transient storage modelling with stream velocity set equal to vpeak 310 

The OTIS-MCAT results produced low p-values for each TSM parameter after the K-S test (p < 0.05, K > 0.12) 

indicating parameter identifiability. However, global identifiability analysis showed that the distribution of TSM 

parameters did not converge towards univocal and optimal parameter values suggesting that identifiability of TSM 

parameters was rather uncertain with TSM outcomes performing worse than the ADE (Figure 5, green dots). The 

global identifiability of TSM parameters increased considerably through the iterative model approach. After the 315 

third TSM iteration, the best performing parameter sets approached unique parameter values (Figure 5, blue dots) 

and the CDF corresponding to the best 0.1% of the results deviated from 1:1 line and from the CDF of the best 

10% of the results (results not shown). These conditions, together with K of K-S test always > 0.25 and p-value < 

0.05 for each TSM parameter and tracer experiment, showed a clear increase of identifiability compared to the 

initial OTIS-MCAT results. The increase of parameter identifiability was followed by a sharp increase of model 320 

performance, with the best performing parameter sets at the end of the iterative approach having RMSE values 

below RMSEADE for all the investigated BTCs (Figure 5, blue dots and black line). Dynamic identifiability analysis 

for the last TSM iteration indicated that A and D control respectively the falling limb and the rising limb of the 

BTC (Figure 6a-d, results of E1). α controlled both on the rising limb, falling limb and tail of the BTC (Figure 6e-

f) and ATS controlled both the falling limb and the tail of the BTC (Figure 6g, h).  325 

Results from OTIS-P showed parameter identifiability with narrow 95% confidence range for the ATS and A, while 

D and α parameters were estimated with higher uncertainty due to larger 95% confidence range (Figure 2, 4). The 

parameter sets obtained via OTIS-P (Figure 2, 4, red vertical dashed line) were close to approach the best fitting 

results at the end of the used iterative approach, regardless the fact the velocity was considered as a variable 

parameter (Figure 2), or was it considered equal to vpeak (Figure 5, Table 2).  330 

3.2 Variation of transport metrics with increasing identifiability of TSM parameters  

The investigated transport metrics showed high uncertainty as long TSM parameters were poorly or non-

identifiable (Figure 2, 5, green and yellow dots). This was particularly evident after the first and second TSM 

iterations, when the 100 best performing parameter sets showed Tsto values spanning over nine orders of magnitude 

(Figure 7d-f), while both Ls and qs spanned over three orders of magnitude (Figure 7a-c, g-i). When TSM 335 

parameters were poorly identifiable, the values of the metrics obtained when stream velocity was considered as a 

variable parameter (Figure 7, blue boxplots, first TSM iteration) and when stream velocity was considered equal 

to vpeak (OTIS-MCAT, Figure 7, orange boxplots, first TSM iteration) showed relevant differences. When v was 

considered variable together with the others TSM parameters, the best performing parameter set after the first 

TSM iteration showed a non-negligeable role of transient storage in solute transport for the investigated discharge 340 

conditions. This was indicated by the high values of Ls (from ~2 km for E1 to ~69 m for E3), by the rather low 
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exchange flux qs (from 0.06 l/s for E1 to 8.8 l/s for E3), and by the long solute residence time in the storage zone 

Tsto (ranging from ~ 140 days for E1 to ~ 15 hrs for E3). Conversely, very different values were obtained for the 

transport metrics when v was fixed equal to vpeak. The results from OTIS-MCAT showed a rather fast exchange 

flux of the active stream with the transient storage zone (qs ranged from ~23 l/s for E1 to ~121 l/s for E3), a rather 345 

similar Ls for the three tracer experiments (~10 m), and Tsto increased with increasing discharge (from ~12 sec for 

E1 to ~3 sec for E3). 

However, once the TSM parameters were identifiable all the transport metrics converged toward constrained 

values and consistent with OTIS-P results (Figure 7). This was achieved whether stream velocity was kept fixed 

or was variable in the modelling procedure. Results of the last TSM iteration showed that the investigated transport 350 

metrics have low dispersion around the median, and that the median almost coincides with the result of the best 

performing parameter set (Figure 7, red dots). When all TSM parameters were identifiable for the three tracer 

experiments, the transport metrics showed increasing qs (from ~2.7 l/s for E1 to ~23 l/s for E3), increasing LS 

(from ~50 m for E1 to ~100 m for E3), and decreasing Tsto (from ~150 s for E1 to ~33 s for E3) with increasing 

discharge conditions (from E1 to E3). Fmed did not change widely between the TSM iterations since the median 355 

of the best performing 100 parameter sets varied always between 0.04 and 0.2 (Figure 7j-l). However, together 

with the other investigated transport metrics, the dispersion of Fmed values around the median decreased with 

increasing identifiability of TSM parameters.  

4. Discussion 

4.1 The importance of the identifiability of TSM parameter for correct interpretation of hydrological 360 

processes 

Our results demonstrated that poor or non-identifiability of TSM parameters can result in a wrong hydrological 

interpretation of the processes controlling solute transport in streams. Our results showed that with increasing 

discharge conditions Ls and qs increased, Tsto decreased, and Fmed was rather stable for simulations where the TSM 

parameters were identifiable (cfr paragraph 3.2). The low uncertainty and the values of the investigated transport 365 

metrics suggested that the transient storage at the experimental site was most probably controlled by in-stream 

dead-zones (Boano et al., 2014). The observed link of Ls, qs, and Tsto values with discharge (Figure 7) also 

suggested that the transient storage at our site became less important in controlling solute transport with increasing 

discharge conditions. This could be explained as with increasing discharge conditions the wet stream areas and 

the water depth increased more than the wetted perimeter that embeds dead-zoned and streambed heterogeneities 370 

(Gooseff et a., 2008). This would have caused a progressive increase of piston-flow transport and a reduced role 

of low-flow areas for in-stream solute retention with increasing discharge condition. 

However, if we would have based the process interpretation on simulations before we reached identifiability of 

TSM parameters, the conclusions would have been different. The values for the transport metrics obtained when 

v was considered variable together with the others TSM parameters, together with published results about solute 375 

residence time in the hyporheic zone and in in-stream channel (Boano et al., 2014; Gooseff et al., 2005) could 

have been interpreted in a way that the transient storage was controlled by in-stream dead-zones during high-

discharge events and by a low rate hyporheic exchange that lasted several weeks at low flow conditions (Figure 

7, blue boxplots and first TSM iteration). Conversely, results from OTIS-MCAT might have been interpreted in 

a way that transient storage of the studied stream channel was controlled by dead-zones at the lowest flow 380 
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conditions and by in-stream turbulences that caused solute retention in the transient storage zone to last ~3 seconds 

during high-flow events (Figure 7, orange boxplots and first TSM iteration). 

Compared to the inverse modelling approach (OTIS-P), we were able to interpret modelling results without the 

uncertainty typically associated with inverse modelling outcomes that do not assess the identifiability of the 

parameters and of the associated hydrological metrics across their feasible spectrum of values (Ward et al., 2017; 385 

Kelleher et al., 2019). Furthermore, by reaching identifiability of TSM parameters, we also obtained a low 

uncertainty of the transport metrics and a more robust process interpretation compared to the standard random 

sampling approach, which showed poor identifiability of TSM parameters (Figure 2, 5, green dots). The results 

presented in this work offer new insights into the role that identifiable TSM parameters have on the interpretation 

of solute transport processes in streams. The limitations of relying on poorly identifiable parameters in TSMs are 390 

generally well known (Wagner & Harvey, 1997; Ward et al., 2017; Kelleher et al., 2019), however the majority 

of TSM studies did not address parameter uncertainty and/or draw conclusions based on non-identifiable transient 

storage parameters (see the commentary of Knapp & Kelleher, 2020). Identifiability of TSM parameters is 

nowadays crucial, since the amount of contradicting interpretation of TSM results hamper our ability to link 

specific physical processes and hydrologic conditions to an increase or decrease of transient storage parameters 395 

(Ward & Packman, 2019). Contradicting hydrologic interpretation and modelling outcomes can be driven by 

different hydrologic and morphological setting of the investigated stream reach (Gooseff et al., 2005, Kelleher et 

al., 2013). Our study highlights how the poor or non-identifiability of TSM parameters can result in a wrong 

estimation of solute transport metrics in streams and can play a major role on the hydrologic interpretation of 

modelling results.  400 

4.2 Challenges associated to parameter identifiability in TSMs 

We showed that non-identifiability of α and ATS in TSM can result from the assumption v = vpeak, the selected 

number of parameter sets, and the parameter space used for the random sampling. Our results indicated that v 

interacts with α and ATS in transient storage models. This was particularly evident when v was variable together 

with the other TSM parameters, and the non-identifiability of ATS was coupled with identifiability of v and α 405 

(Figure 2, green and yellow dots). On the contrary, ATS was found to be identifiable and α to be non-identifiable 

when v was fixed equal to vpeak (Figure 5, yellow dots). It is known that a separate evaluation of the advection-

dispersion parameters from the transient storage parameters can result in misevaluation of transient storage 

parameters due to the high parameter interaction (Knapp & Kelleher, 2020). However, no study so far investigated 

the role of the assumption v equals vpeak on the non-identifiability of α or ATS in random sampling approach for 410 

TSMs. Despite the observed interaction between v, α and ATS, our study also showed that when all TSM parameters 

are identifiable the best performing parameter sets showed similar values no matter if the stream velocity was 

fixed equal to vpeak, or was considered a variable parameter (Table 2). 

Our results showed that non-identifiability of transient storage parameters might indicate inaccurate TSM results. 

This was evident from TSM iterations showing non-identifiability of α and ATS, with the best model performances 415 

approaching the RMSEADE (Figure 2, 5, black line). This outcome indicated that non-identifiability of α or ATS is 

linked to an underestimation of transient storage process with the optimal modelled BTCs mimicking the ADE. 

Similar to our results, many authors showed non-identifiability of TSM parameters in random-sampling approach. 

Previous research found identifiable ATS coupled with non-identifiable α (Camacho & González, 2008; Kelleher 
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et al., 2013; Wagener et al., 2002; Wlostowski et al., 2013), while other TSM applications found α to be 420 

identifiable coupled with non-identifiability for ATS (Kelleher et al., 2019), or α or ATS to be both non-sensitive 

and non-identifiable (Camacho & González, 2008; Ward et al., 2013; Ward et al., 2017). Random-sampling 

approach are generally considered more informative than inverse-modelling approach (Ward et al., 2017; Knapp 

and Kelleher, 2020), however our results indicate that model outcomes showing non-identifiability of transient 

storage parameters should be used with particular caution for model interpretation due to the rather different 425 

parameter estimation when TSM parameters were identifiable and non-identifiable (Figure 2, 5). 

Identifiability of TSM is commonly studied via random sampling approaches using between 800 and 100,000 

parameter sets sampled from a parameter space spanning several orders of magnitude (Table 1). Our study 

demonstrated that it is unlikely to reach parameter identifiability via random-sampling approach using less than 

100,000 parameter sets when investigating a rather large parameter space of TSM parameters (Table 1). Our 430 

results showed identifiability only after the third TSM iteration, between 230,000 and 345,000 parameter sets and 

by narrowing the investigated parameter range twice (Figure 2, 5, blue dots). While the range and the order of 

magnitude of advection-dispersion parameter can be estimating by using the ADE, the ranges where α and ATS are 

identifiable are never known a-priori and random sampling approaches need to target a parameter space large 

enough to capture the distribution of transient storage parameters on their entire feasible space. Thus, the peak of 435 

performance for the transient storage parameters can be so narrow that it can be missed by the random sampling 

approach or by only a low number of selections. Similar conclusions have been obtained by Ward et al. (2017), 

who found by using the OTIS-MCAT model via 100’000 parameter sets that the TSM parameters were identifiable 

only for one of the three investigated BTCs.  

Other studies coupled random sampling approaches with behavioural thresholds to derive the most sensitive range 440 

of TSM parameters and reduce parameter uncertainty, yet this was done to constrain only the range of A (Kelleher 

et al., 2013; Ward et al., 2017). Here, we demonstrated the importance of coupling the behavioural threshold 

approach with the global and dynamic identifiability analyses in successive TSM iterations (Kelleher et al., 2013; 

Ward et al., 2017). The high information content (> 0.66, eg. Figure 3j) of α and ATS on the tail of the BTC 

provided valuable information to constrain the parameter space in successive TSM iterations. This approach 445 

eventually allowed us to identify TSM parameters. 

4.3 How TSM parameters control the rising limb, the peak, and the falling limb of the BTC 

The relative high information content of transient storage parameters on the rising limb and the peak of the BTC, 

coupled with the high information content of advection-dispersion parameters on the falling limb and tail of the 

BTC (Figure 4, 6 8a, c, e) showed that all TSM parameters control solute arrival-time and solute retention in 450 

stream channels. This outcome is in contradiction with the common interpretation of TSM parameters, where it is 

assumed that the advection-dispersion parameters control the solute arrival time, while transient-storage 

parameters are assumed to control the tail of the BTC (Bencala, 1983; Bencala et al., 2011; Bencala & Walters, 

1983; Smith, 2005; Runkel, 2002). Following this common interpretation of the role of TSM parameters on the 

BTC, some authors decomposed the BTC in an advective part and a transient storage part (Ward et al., 2019; 455 

Wlostowski et al., 2017). This decomposition allows to quantify the role of advection-dispersion and transient 

storage embedded in the BTC. However, it also implicitly assumes a negligeable role of advection-dispersion 
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parameters on the BTC tail, and of transient-storage parameters on the rising limb and peak of the BTC which is 

in contradiction with our findings (Figures 4, 6, 8). 

Our work demonstrated that the assumption v equals vpeak might not be representative of the advection role on 460 

solute transport in streams. The assumption of stream velocity equalling vpeak implies that vpeak can encompass the 

effect of advection on the entire BTC or at least in the rising-limb and peak of the BTC. However, when v was 

used as calibration parameter, our results showed that v is one of the least meaningful parameters for simulating 

the peak of the BTC at low discharge (Figure 4a, b; 8a), while higher information content for v is obtained at 

higher discharge rates for values larger than vpeak at the peak of the BTC (Figure 8c, e, dynamic identifiability 465 

plots not shown). Our results also highlighted how assuming v equals vpeak caused a stronger influence of α and 

weaker influence of ATS on the BTC compared to the case when v is variable. Indeed, the dynamic identifiability 

analysis for the case v equals vpeak underestimated the role of A and ATS on the rising limb and peak of the BTC 

and overestimated the role of D and α on the rising limb of the BTC compared to the case when v was considered 

variable together with the other TSM parameters (Figures 4, 6). 470 

Several studies have addressed the identifiability of the TSM parameters for different sections of the BTC and 

showed both similar and contrasting outcomes to our findings (Figure 8g-l, Wagner & Harvey, 1997; Wagener et 

al., 2002; Scott et al., 2003; Wlostowski et al., 2013; Kelleher et al., 2013). The sensitivity of TSM parameters in 

different sections of the BTC might be driven by different physical settings or discharge condition of the study 

sites. For example, the sensitivity of the TSM to α and ATS is expected to increase for dispersive streams and 475 

alluvial stream channels, compared to mountain reaches with low or null hydrologic exchange with the hyporheic 

zone (Gooseff et al., 2005; Kelleher et al., 2013). However, our analysis also suggests that the different results on 

the importance of TSM parameters for certain sections of the BTC reported in Figure 8 could be driven by the 

selected random sampling approach and the non-identifiability of TSM parameters.  

Results from Wagner & Harvey (1997) and Scott et al. (2003) are in partial agreement with our results for the 480 

case v equals vpeak (Figure 8b, d, f, g, h) suggesting a non-negligeable influence of D on the rising and the falling 

limb of the BTC and a significant role of α and ATS on controlling the peak, the falling limb, and the tail of the 

BTC. However, our results also highlight a non-relevant role of A on the rising limb and the peak of the BTC in 

our experiments (Figure 8b, f). Our results also show the role of α on controlling the rising limb of the BTC 

(Figure 8b, d, f), a result that was not found by other studies (Scott et al., 2003; Wagner & Harvey, 1997). This 485 

difference might be driven by different hydrologic conditions and physical settings of the study sites, by the 

methodologies used for accounting parameters sensitivity, by the parameter sampling procedure, or the strategy 

used to obtain the best-fitting parameter set.  

Consistent with our results, the dynamic identifiability analysis of TSM parameters by Wagener et al. (2002) and 

Wlostowski et al. (2013) indicated high identifiability of A on the rising limb of the BTC, while α and ATS 490 

controlled the falling limb and the tail of the BTC (Figure 8h, j). However, they also report lower information 

content for D, ATS and α on the BTC compared to our study. This difference may arise from the parameter range 

and number of simulations chosen by the authors that could affect the TSM results. Plots of the parameter values 

against the corresponding objective function in Wagener et al. (2002) and the regional sensitivity analysis in 

Wlostowski et al. (2013) do not indicate parameter identifiability for ATS, D and α. These results together with our 495 

identifiability plots when TSM parameters were poorly identifiable (Figures 2, 5, green and yellow plots) suggest 

that the range and the number of the parameter sets chosen by the authors could have been unsufficient to obtain 
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global sensitivity and identifiability of D, ATS and α parameters. Similar to Wagener et al. (2002) and Wlostowski 

et al. (2013) results, our dynamic identifiability analysis showed no influence of ATS on the majority of the BTC 

when it was non-identifiable (Figure 3).  500 

Eventually, results from Kelleher et al., (2013) emphasize the roles that A and D have on large sections of the 

BTC (Figure 8k, l). While this is consistent with our findings (Figure 8a, c, e), Kelleher et al., (2013) also indicate 

that transient storage parameters have a rather weak influence only on the tail of the BTC (Figure 8k, l). Different 

sensitivity of TSM to transient storage parameters could be driven by the different approach used for evaluating 

the sensitivity (i.e. Sobol’ sensitivity analysis). However, our results suggest that the number of parameter sets 505 

(42,000) selected by Kelleher et al. (2013) might be too small to obtain identifiability of TSM parameters 

compared to the rather large parameter range chosen for their Monte Carlo sampling (Table 1). Results by Kelleher 

et al., (2013) are very similar to our TSM iterations for cases where α was non-identifiable (v equals to vpeak, Figure 

5 yellow dots, dynamic identifiability plots not shown). We also demonstrated that our results after the first and 

second TSM iterations are not useful for interpreting transient storage process, because of the non-identifiability 510 

of the TSM parameters and the low model performances (RMSE ≥ RMSEADE (Figure 5a-p, green and yellow dots).  

5 Conclusion 

There is a clear need in stream hydrology to better identify TSM parameters for simulating solute transport in 

streams. Here we address parameter identifiability by combining global identifiability analysis with dynamic 

identifiability analysis in an iterative approach to reduce parameter uncertainty in TSMs. Our results show that v 515 

interacts with the transient storage parameters. Namely, when v was variable together with the other TSM 

parameters, we found non-identifiable ATS coupled with identifiable α. On the contrary, when v was assumed equal 

to vpeak, ATS was found identifiable and α non-identifiable. We proved that non-identifiability of transient storage 

parameters can result in modelled BTC mimicking the ADE. Non-identifiable TSM simulations also severely 

misevaluated the solute retention time in the storage zone and the exchange flow with the storage zone, with a 520 

difference respectively up to four and two orders of magnitude compared to the results when the TSM parameters 

were identifiable.  

We here validated our initial hypothesis that the BTC tail contains critical information on transient storage 

parameters, since we clearly reduced parameter uncertainty compared to the standard random-sampling approach 

coupled with the global identifiability analysis. Results obtained via inverse modelling approach are generally 525 

considered less informative about identifiability of TSM parameters compared to random-sampling approaches. 

However, random sampling approach rarely achieved identifiability in TSMs. As a complement to the existing 

body of literature, our work shows that the non-identifiability of α or ATS occurring in prior TSM studies might be 

related to a lack of modelled transient storage exchange due to the narrow peak of performances that can be easily 

missed by the rather small number of simulations compared to the investigated parameter range. When all the 530 

TSM parameters were identifiable, the best performing parameter sets and the evaluated transport metrics 

converged toward unique values, regardless the fact the velocity was considered as a variable parameter or equal 

to vpeak. This allowed us a robust assessment of the hydrological processes governing the solute transport in the 

investigated site. 

Our work highlights how both parameter evaluation and process interpretation in TSMs should be used with 535 

particular caution even if one parameter between α or ATS is found uncertain and non-identifiable. Stream 
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hydrologists are currently unable to obtain univocal physical process interpretation from modelling results due to 

contradictory interpretation of TSM parameters and lack of parameter identifiability in the published studies. Our 

work casts new lights on the opportunity to increase parameter identifiability and achieve stronger hydrologic 

interpretation of the processes governing solutes transport in streams.  540 
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Table 1. Summary of publications that address identifiability of TSM parameters with random sampling approach. 730 
We reported the used number of parameter sets and the parameter ranges, while in parenthesis it is reported the 

method used for the parameter sampling. “Double step” indicates that the sampling procedure was divided in two 

steps. In the first step, A varied across a broad range and in the second step, it was varied across a narrowed range to 

cover the most sensitive-range of the parameter domain. Each of the two steps has a number of simulations equal to 

half of the total number indicated in the table. 735 

Authors Number of parameter sets Range of TSM parameters 

Wagner & Harvey, 1997 800 (Monte Carlo) A (m2) 0.02-0.6 

D (m2/s) 0.025-0.8 

ATS (m2) 0.01-2 

α (1/s) 0.000005-0.001 
 

Wagener et al., 2002 1,000 (Monte Carlo) A (m2) 0.3-1.05 

D (m2/s) 0.1-0.225 

ATS (m2) 0.1-0.5 

α (1/s) 0.00035-0.0025 
 

Wlostowski et al., 2013 2,000 (Monte Carlo) A (m2) 0.5-1.0 

D (m2/s) 0.5-1.5 

ATS (m2) 0.05-0.5 

α (1/s) 10-4-10-3 
 

Kelleher et al., 2013 42,000 (Double step Monte 

Carlo) 
A (m2) 0.001-1.0 (In the 

second step, min 

and max A 

values chosen 

from the best 

1,000 results of 

the first step) 

D (m2/s) 0.001-1.0 

ATS (m2) 0.001-0.01 

α (1/s) 10-5-10-3 
 

Ward et al., 2013 100,000 (Monte Carlo) 

 

 

 

A (m2) +-50% Apeak 

D (m2/s) 0.0001-5 

ATS (m2) 0.01-10 

α (1/s) 10-8-10-1 
 

Ward et al., 2017 100,000 (Double step Monte 

Carlo) 
A (m2) 0.1-1 (0.3-0.5 in 

the second step) 

D (m2/s) 0.01-10 

ATS (m2) 0.01-1 

α (1/s) 10-5-10-1 
 

Kelleher et al., 2019 27,000 (LHS) A (m2) 1.0 - 3.0 

D (m2/s) 0.001 - 10 

ATS (m2) 0.01 - 1 

α (1/s) 10-6 - 10-2 
 

This manuscript 

 

Second ADE – 35,000 (LHS) v (m/s) vpeak · 0.8 - 

velocity of the 

first recorded 

increase of 

concentration in 

the BTC 

A (m2) +-20% Apeak 

D (m2/s) 0.0001 - Dbest · 

1.2 
 

This manuscript 

 

First TSM iteration – 115,000 

(LHS) 
v (m/s) +-50% vADE  

A (m2) +-50% AADE 

D (m2/s) 0.0001 - DADE · 2 

ATS (m2) 0.00001 - 20 

α (1/s) 0.00001 - 0.1 
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Table 2: Summary of the TSM results. OTIS-MCAT results refer to the case v = vpeak without any successive 

modification of the parameter space via dynamic identifiability analysis results. “Iterative TSM” indicate the best 740 
parameter sets obtained after the iterative TSM approach presented in Figure 1 and applied for the cases v = variable 

and v = vpeak. The best TSM results are indicated with bold font. 

  v A D α ATS RMSE 

E
1

 

ADE 0.0681 0.0395 0.0965 / / 1.9423 

OTIS-P 0.0739 0.0364 0.0637 0.0006 0.0074 0.6159 

OTIS-MCAT 0.0739 0.0351 0.1339 0.0119 0.0051 2.7421 

Iterative 

TSM 

v = variable 0.0728 0.0369 0.0522 0.0013 0.0073 0.7229 

v = vpeak 0.0739 0.0359 0.0534 0.0013 0.0077 0.7681 

E
2

 

ADE 0.1746 0.054 0.1599 / / 0.9982 

OTIS-P 0.1774 0.0509 0.1151 0.0016 0.0077 0.4152 

OTIS-MCAT 0.1774 0.0604 0.1271 0.0137 0.0033 1.4429 

Iterative 

TSM 

v = variable 0.1790 0.0523 0.1131 0.0018 0.0067 0.3377 

v = vpeak 0.1774 0.0528 0.1154 0.0015 0.0065 0.3696 

E
3

 

ADE 0.262 0.0874 0.2525 / / 0.9894 

OTIS-P 0.275 0.081 0.1404 0.005 0.0144 0.2544 

OTIS-MCAT 0.275 0.0849 0.2441 0.0259 0.0073 1.2612 

Iterative 

TSM 

v = variable 0.2861 0.0818 0.1286 0.0064 0.0145 0.2697 

v = vpeak 0.275 0.083 0.1603 0.0037 0.0123 0.3109 
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Figure 1: Conceptual modelling workflow. The parameters have the following unit of measurements: velocity v [m/s], 

cross-sectional area A [m2], longitudinal dispersion coefficient D [m2/s], exchange coefficient α [1/s], area of the 770 

transient storage zone ATS [m2].  
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Figure 2. Parameter values plotted against the corresponding RMSE values for the TSM results conducted for the 

tracer injections (a-e) E1, (f-j) E2, and (k-o) E3. (a-j) Green, yellow, blue and orange dots indicate results respectively 

for the first, second, third, and fourth TSM iterations. (k-l) Green dots indicate results for the first and second TSM 775 

iterations, while yellow, blue and orange dots indicate results respectively for the, third, fourth, and fifth TSM 

iterations. Each TSM iteration was conducted via 115,000 parameter sets. The red dots indicate OTIS-MCAT results 

(best parameter set after the first TSM iteration for v equals vpeak) while the black dots indicate the best performing 

parameter value after the used iterative TSM approach. The horizontal black line indicates the RMSEADE (Table 2). 

Vertical dashed red line indicates OTIS-P results, while the 95% confidence range for OTIS-P results are indicated via 780 

vertical grey areas. 
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Figure 3. Dynamic identifiability analysis of TSM parameters for the first TSM iteration (E1, v considered as a varying 

model parameter). (a), (c), (e), (g), (i) likelihood distribution as function of parameter values at each time step. Black 

line indicates the observed BTC, dashed black lines indicate the 90% confidence limits. (b), (d), (f), (h), (j) indicate 

parameter information content (red bars) at each time step. Black line indicates the observed BTC. 795 
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Figure 4. Same as Figure 3, but reporting dynamic identifiability results for the fourth and last TSM iteration (E1; v 

considered as a varying model parameter).  815 
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 835 

Figure 5. Same as Figure 2, but reporting TSM results when velocity was considered equal to vpeak. 
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Figure 6. Same as Figure 3, but reporting dynamic identifiability results for the third TSM iteration (E1, v = vpeak). 
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Figure 7. Boxplot of the investigated transport metrics for the best 100 parameter sets for the three simulated 865 

experiments. (a-c) Ls, (d-f) Tsto, (g,i) qs, (j-l) Fmed. Results are reported for (a, d, g, j, m) E1, (b, e, h, k, n) E2, and (c, f, i, 

l ,o) E3. On the x axis we indicated the n-th TSM iteration. Blue and red boxplots indicate results when velocity was 

respectively a varying model parameter and when it was kept fixed and equal to vpeak. Red dots indicate the transport 

metric values obtained via the parameter sets with lower RMSE. The red and the black horizontal dashed lines indicate 

respectively the transport metric obtained using the OTIS-P results and OTIS-MCAT results. 870 
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Figure 8. Qualitative plots of the TSM parameter influence on different sections of the BTC. (a) and (b) qualitative 880 

parameter information content on the BTC for E1, (c, d) E2, and (e, f) E3. (g) Wagner and Harvey, 1997; (h) Wagener 

et al., (2002); (i) Scott et al., (2003); (j) Wlostowski et al., 2013; (k) Kelleher et al., (2013) for the case of a dispersive 

mountain stream (Case 1) and (l) Kelleher et al., (2013) for the case of a small low-flow mountain stream (Case 2). In 

plots (a-f) solid lines indicate an information content above 0.66 while dashed lines indicate an information content 

between 0.33 and 0.66. Plot (g) has been modified from Figure 7 in Wagener et al., (2002) in order to fit our 0.66 and 885 

0.33 threshold classification in term of information content. Plots (k) and (l) indicate by solid and dashed lines if the 

parameters influence the model output by itself or through interactions (cfr. Section 6.1 Kelleher et al., 2013). Plots (g) 

and (i) describe the parameter influence evaluated via sensitivity evaluation (cfr. p. 1733, Wagner and Harvey, 1997) 

and dimensionless scaled sensitivities (cfr. Table 1 Scott et al., 2002), therefore the parameter influence is here described 

only using solid line. Plot (j) describes the parameter influence after DYNIA analysis, however information content 890 

plots were not reported by the authors, therefore the solid lines indicate the areas for the best performing parameters 

as indicated in Figure 2 of Wlostowski et al. (2013). 
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Appendix A - Parameter sensitivity and identifiability 

The interpretation of the parameter space is based on the sensitivity and identifiability of the i-th parameter on the 

chosen model (the TSM) via a selected objective function used to compare model results with the observation (the 900 

BTC) (Kelleher et al., 2019; Wagener et al., 2003; Wagener & Kollat, 2007; Ward et al., 2017; Wlostowski et al., 

2013). A parameter is called sensitive whenever a variation in the parameter value causes variations in the TSM 

performances (Kelleher et al., 2019). A parameter is identifiable whenever the best-fit value of that parameter is 

constrained on a relative narrow range across the entire distribution of the possible parameter values (Ward et al., 

2017). To assess identifiability of TSM parameters, we used parameter vs likelihood plots, identifiability plots, 905 

regional sensitivity analysis plots and parameter distribution plots.  

Parameter vs likelihood plots visualize the distribution of the investigated values of a certain parameter plotted 

against the corresponding values of the objective function (Wagener et al., 2003; Wagener & Kollat, 2007). 

Identifiable parameters are described in parameter vs likelihood plots by a univocal increase of model 

performances approaching a certain optimum-value of the parameter (Figure A1a). Non-identifiable parameters 910 

are described in parameter vs likelihood plots by a not-univocal increase of performances of the model in certain 

parameter range (Figure A1b). Parameter distribution plots show probability density function (PDF) divided by 

behavioural sets (from top 20% to top 0.1% of the results for the selected objective function) (Ward et al., 2017). 

Identifiable parameters are indicated by narrow range of the PDF relative to the smaller behavioural sets (top 

0.1%, 0.5% and 1% of the results) compared to a wider range of the PDF relative to the larger behavioural sets 915 

(top 5%, 10% and 20% of the results) (Figure A1c). Non-identifiable parameters are defined by equally wide PDF 

for the different investigated behavioural sets (Figure A1d). Regional sensitivity analysis plots are obtained after 

dividing the population of the parameter by behavioural sets (from top 10% of the results to top 1% of the results 

with 1% step for the selected objective function, Ward et al., 2017; Kelleher et al., 2019). Each objective function 

population so obtained was transformed into cumulative distribution functions (CDFs) for equal size bins of the 920 

parameter range (Kelleher et al., 2019; Wagener & Kollat, 2007). Sensitive parameters are identified by CDF for 

the top 1% of the results deviating from the CDF for the top 10% of the results (Figure A1e). If the CDFs lay on 

the 1:1 line, then the objective function is uniformly distributed across the parameter range which indicates 

parameter unsensitivity (Figure A1f). Identifiability plots display the CDF of the objective function across the 

selected parameter range (Wagener et al., 2002; Ward et al., 2017). The slope of the CDF will be higher in the 925 

parameter interval where the model is more sensitive to that parameter. The measure of the local gradient of the 

cumulative distribution will be represented by the height of the bar plot in each equally-sized bin across the 

parameter space. Higher bars and steeper gradients of the CDF line indicate greater model performances in that 

parameter range and, therefore, parameter sensitivity and identifiability (Figure A1g). On the contrary, equal eight 

of the bars and similar gradients of the CDF line indicate that the parameter is unsensitive and non-identifiable 930 

(Figure A1h). 

The plots used to address the global sensitivity analysis indicate parameter identifiability and sensitivity on the 

entire observed BTC, however they are unable to address if the i-th parameter describes the process it is meant to 

represent or if the role of the i-th parameter on the model is constant in time (Wagener & Kollat, 2007). To address 

identifiability and sensitivity of the i-th parameter on the different sections of the BTC we applied DYNIA 935 

algorithm which steps are reported in Figure A2 (Wagener et al., 2002).  
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Figure A1: Examples of the four types of visualizations intended for parameter identifiability and sensitivity with the 

plots in the first column (a, c, e, and g) reporting an example of plots for sensitive and identifiable parameter and plots 

in the second column (b, d, f, and h) reporting an example of plots for insensitive and non-identifiable parameter. (a) 940 

and (b) parameter vs likelihood plots; (c) and (d) parameter distribution plots for the top 20, 10, 5, 1, and 0.1% of the 

results; (e) and (f) regional sensitivity analysis plots from the top 1% to the top 10% of the results; (g) and (h) 

identifiability plots for the top 1% of the model results. 
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Figure A2. Dynamic identifiability analysis algorithm flowchart. (a) The BTC is subdivided in moving windows (size 945 

equal to three times the BTC timestep, Wagener et al., 2002); (b) In each moving window the likelihood (efficiency) of 

every TSM simulation is evaluated via mean absolute error (Wagener & Kollat, 2007); (c) an efficiency-threshold is 

chosen (e.g. top 10%); (d) for the chosen model results, the cumulative distribution function is built for each 

investigated parameter; (e) steps from (b) to (d) are repeated for each moving window and model likelihood for the 

investigated parameter is plotted over time (white: minimum likelihood; black: maximum likelihood). (f) cumulative 950 
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distribution function of the parameter distribution is plot vs the observed BTC together with 90% confidence limits. 

Narrow limits indicate identifiable parameter while wide limits indicate unidentifiable parameter. (g) a second plot 

reports the metric of one minus the normalized distance between the 90% confidence limits. Small values of this metric 

indicate that the selected time window contain a narrow identifiability range for the investigated parameter and, 

therefore, that it is informative on that part of the BTC (Wagener et al., 2002).   955 
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